

ADW350 Wireless Metering Meter

Installation and Use Manual V1. 0

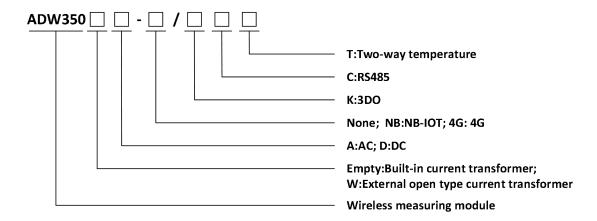
Declaration

The copyright is the property of Acrel. Any information in any paragraph or section cannot be extracted, copied or otherwise reproduced or propagated. Otherwise offenders shall take all consequences.

All rights are reserved.

Acrel reserves the right to modify the product specifications herein without notification. Please consult the local agent about the latest specifications before placing a purchase order.

Contents


Declaration	
1 Overview	3
2 Product model and specification	3
2.1 Naming Rules	3
2.2 Functional Characteristics.	3
3 Technical parameter	4
3.1 Electrical performance	4
3.2 Work environment	4
4 Dimension and installing description	on5
4.1 Dimension (Unit: mm)	5
4.2 Interfaces of Auxiliary pow	er supply, Communication and Pulse7
4.3 Interfaces of DI and DO	7
4.4 Interfaces of Temperature	7
4.5 Interfaces of Hall current s	ensor8
4.6 Instruction of wiring	8
5 Main functions and features	10
5.1 Measurement	10
5.2 Metering	10
5.3 Demand	11
5.4 Historical data	11
5.5 Digital input/ output	11
5.6 Wireless Communication F	unction11
6 Communication description	
6.1 Protocol	11
6.2 MODBUS	
6.3 Settings of Alarm	16
6.4 Historical Data Memory	18
6.5 Record of extreme value a	nd occurrence time19
7 Common troubleshooting	22
7.1 RS485 networking commu	nication failure22
7.2 Wireless communication fa	ailure of instrumentation22

1 Overview

ADW350 Wireless Metering Meter is mainly used to metering three phase active energy on low voltage network. The product boasts of advantages including compact size, high precision, rich features. According to different requirements, there are many communications functions like RS485 communication, NB, 4G, adding the new current sampling mode using external transformer. It can be flexibly installed in the distribution box to achieve sub-item electric energy metering, operation and maintenance supervision or power monitoring requirements for different regions and different loads.

2 Product model and specification

2.1 Naming Rules

2.2 Functional Characteristics

Chart 1 Functions of ADW350

Functions	Description
Display mode	LED
Energy metering	Active kWh (positive and negative), quadrant reactive
Energy metering	power energy
Electrical measurement	U, I, P, Q, S, PF, F
Harmonic function	THDv, Harmonic on 2nd-31st
Pulse output	Active pulse output
Three-phase unbalance degree	Voltage unbalance,current unbalance
Temperature measurement	Two way temperature (Alternate configuration:T)
DI/DO	3DO (Alternate configuration:K)
External current transformer	External open type current transformer
Laterial current transformer	(Alternate configuration:W)
Electrical parameter	Undervoltage, undercurrent, overcurrent, underload,
Enterior parameter	etc

	Infrared communication			
Communication	RS485 (Alternate configuration:C)			
Communication	NB-IOT(Alternate configuration:NB)			
	4G (Alternate configuration:4G)			

3 Technical parameter

3.1 Electrical performance

Chart 2 Electrical performance of ADW350

		AC: $3 \times 57.7/100$ V, $3 \times 220/380$ V, $3 \times 380/660$ V, 3×100 V, 3×380 V,			
	Rated voltage	3×660V;			
Voltage input		DC: 48V			
	Reference	AC: 50Hz			
	frequency	AC. JUIL			
	Consumption	<0.5VA (Each phase)			
	Imput ourmant	AC: 3×20(100)A			
Current input	Input current	DC: 50A, 100A			
	Consumption	<1VA (Each phase)			
	Dayron Cymaly	AC: 85~265V			
Auxiliary power	Power Supply	DC: 48V±20%			
	Power consumption	<5W			
	Electrical parameter	Class 0.5			
	Active energy	Class 1			
Measurement	accuracy	Citos i			
performance	Temperature Range	-40°C~100°C			
	Temperature	±2°C			
	accuracy	220			
DO	Contact Rating	5A, AC250V/DC30V			
Pulse	Width of pulse	80±20ms			
Pulse	Pulse constant	AC: 400imp/kWh DC: 1600imp/kWh			
	Wireless	2G; NB; 4G			
	Infrared	TI 4 41 1 4 1 1200			
Communication	communication	The constant baud rate is 1200			
Communication	Interface	RS485(A、B)			
	Connection mode	Shielded twisted pair conductors			
	Protocol	MODBUS-RTU			

3.2 Work environment

Chart 3 Work environment

Temperature range	Operating temperature	-20°C~55°C
remperature range	Storage temperature	-40°C~70°C
Humidity		≤95% (No condensation)

Altitude <2000m

4 Dimension and installing description

4.1 Dimension (Unit: mm)

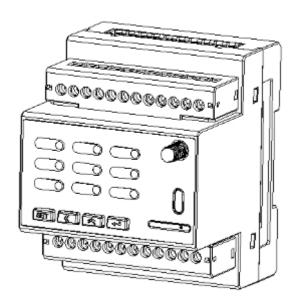


Figure 1 Rendering of ADW350

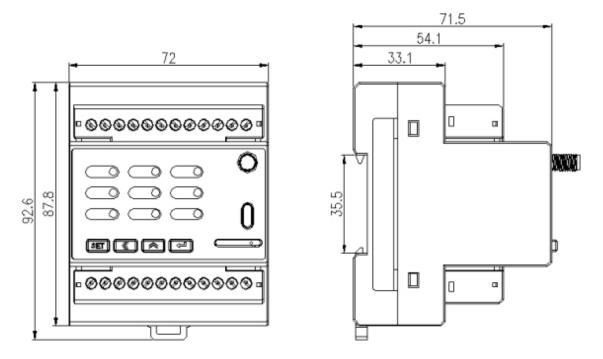


Figure 2 Dimension of ADW350

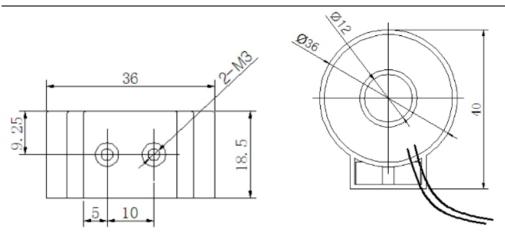


Figure 3 Dimension of transformer (ADW350WA 20(100)A)

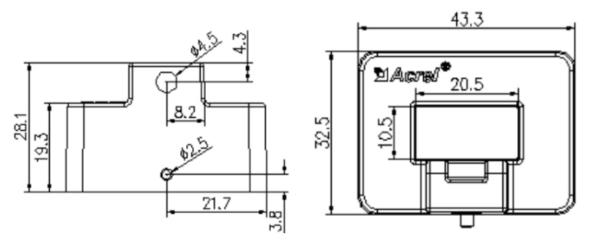


Figure 4 Dimension of Hall current sensor AHKC-BS (ADW350WD)

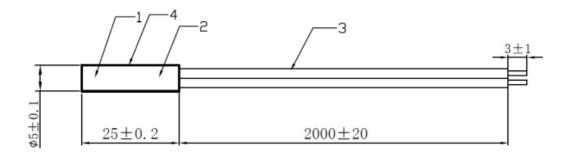
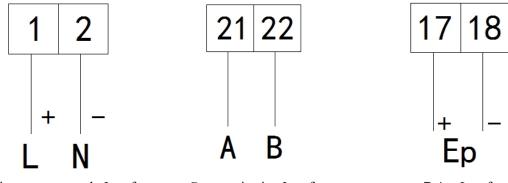
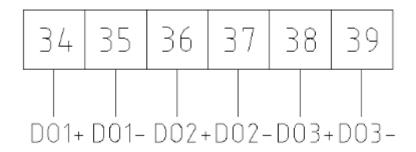



Figure 5 Dimension of K-Type

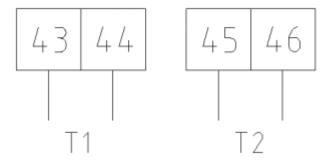
4.2 Interfaces of Auxiliary power supply, Communication and Pulse

Auxiliary power supply Interface

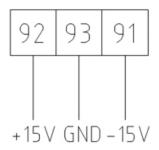

Communication Interface

Pulse Interface

4.3 Interfaces of DI and DO


The digital output is realized by relay for remote control and alarm output.

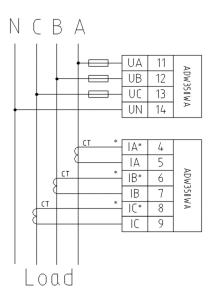
The digital input is realized by digital signal input. The meter has a built-in +12V working power supply so that it does not require external power supply. The meter collects the external break-make information with digital input module and displays it locally. The digital input not only collects and displays the local break-time information but also provides the remote transmission, i.e. remote communication, with RS485.


Digital output

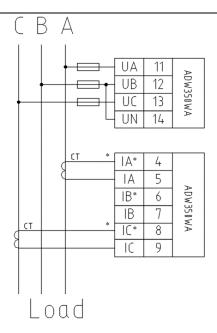
4.4 Interfaces of Temperature

Temperature input

4.5 Interfaces of Hall current sensor

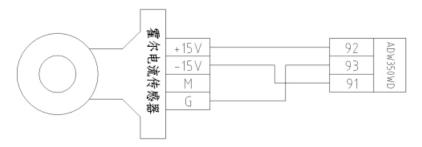

Auxiliary Power

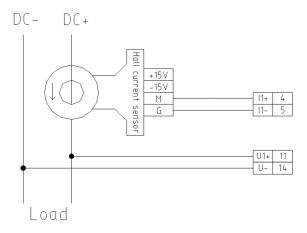
4.6 Instruction of wiring


There are four modes of connection like 3-phase 4-wire (current connected via CT), 3-phase 3-wire (current connected via CT), 3-phase 4-wire (current connected via PT and CT) and 3-phase -wire (current connected via PT and CT).

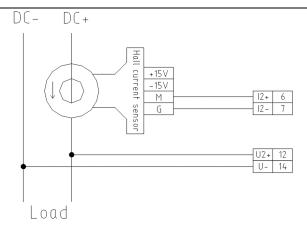
4.6.1 ADW350WA

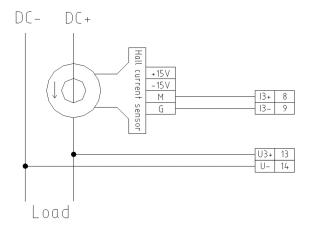
3-phase 4-wire:


3-phase 3-wire:


4.6.2 ADW350WD

Three single-phase DC can be connected.


Connection method of Hall current sensor and auxiliary power terminal:


Loop 1st:

Loop 2nd:

Loop 3rd:

5 Main functions and features

5.1 Measurement

Measure all electrical parameters, including voltage U, current I, active power P, reactive power Q, apparent power S, power factor PF, Voltage imbalance, Current imbalance, frequency, 31st harmonic content and total harmonic content. The measured voltage U keeps one decimal place, the measured frequency F keeps two decimal places, the measured current I keeps three decimal places and the measured power P keeps four decimal places. Voltage imbalance and Current imbalance keeps four decimal places.

Example: U = 220.1V, f = 49.98HZ, I = 1.999A, P = 0.2199KW, \triangle =0.00%

Supporting 4-way temperature measurement, range: $-40{\sim}99^{\circ}{\rm C}$, accuracy: $\pm 2^{\circ}{\rm C}$

Supporting aftercurrent measurement, The initial range: $0\sim1000$ mA, Range multiples can be set $(1\sim60)$.

5.2 Metering

It can measure the current combined active power, positive active power, reverse active power, inductive reactive power, capacitive reactive power, as seen in the electric power.

5.3 Demand

Demand-related concepts are listed as follows:

Demand	Average power measured during the demand period
Max. demand	Maximum amount of demand during a specified period of time
Sliding window time	A recurrence method to measure the demand from any time point during a period shorter than the demand period. The demand measured by this means is called sliding demand. The recurrence time is sliding window time.
Demand period	Time interval when the same average power is measured continuously, also known as window time

Measure eight maximum demands, i.e. A/B/C three-phase current ,positive active, negative active, inductive reactive , capacitive reactive and apparent power demands and the time of maximum demand.

5.4 Historical data

Record the historical data on electricity consumption covering previous 12 months (including four quadrant and multi-rate tariff).

5.5 Digital input/ output

There are three -way Digital output. The Digital output is realized by relay for remote control and alarm output. i.e. remote communication, with RS485.

5.6 Wireless Communication Function

The ADW350 supports NB and 4G communications. Specific agreements on NB and 4G communications can be obtained by contacting relevant personnel of our company.

6 Communication description

6.1 Protocol

The meters adapt Modbus protocol. Please refer to the relevant standards for more information.

6.2 MODBUS

MODBUS-RTU protocol has 03H and 10H command to read and write registers respectively. The following chart is registers' address list:

Start Address (Hexadecimal)	Variable	Length	R/W	Notes
0000Н	Address	2	R/W	1~247
				1: 1200bps
0001Н	Baud rate	2	R/W	2: 3400bps
	Daud Tale	2		3: 4800bps
				4: 9600bps
0002H~0003H	Reserved			

				High byte: 0-none, 1-even, 2-odd;		
0004H	High byte: parity mode, low	2	R/W	low byte: 0- 1 stop Bit, 1- 2 stop		
	byte: stop Bit			Bit		
0005H	Reserved					
0006Н		Pulse	constan	t		
0007H		Backl	ight Tim	ne		
0008H		(Code			
0009H~000CH		Re	served			
000DH		Current	specifica	tion		
000EH			PT			
000FH			CT			
0010H		Re	served			
0011H~0013H	Time, date (see	cond, min	ute, hou	r, day, month, year)		
0014H	Voltage of A phase	2	R			
0015H	Voltage of B phase	2	R	Int		
0016H	Voltage of C phase	2	R	Keep 1 decimal places (The real value is the showed		
0017H	Voltage between A-B	2	R	value divide 10.The following		
0018H	Voltage between B-C	2	R	data all in this rule.)		
0019H	Voltage between C-A	2	R			
001AH	Electricity of A phase	2	R			
001BH	Electricity of B phase	2	R	Int		
001CH	Electricity of C phase	2	R	unit A Keep 2 decimal places		
001DH	Vector sum of 3-phase current	2	R			
001EH	Active power of A phase	4	R			
0020H	Active power of B phase	4	R	Int		
0022H	Active power of C phase	4	R	unit kW		
0024H	Total active power	4	R	Keep 3 decimal places		
0026Н		4	R			
0028H	Reactive power of A phase	4	R	Int		
002AH	Reactive power of B phase	4	R	unit kVar		
002CH	Reactive power of C phase	4	R	Keep 3 decimal places		
	Total reactive power	4	R			
002EH	Apparent power of A phase			Int		
0030H	Apparent power of B phase	4	R	unit kVA		
0032H	Apparent power of C phase	4	R	Keep 3 decimal places		
0034H	Total apparent power	4	R			
0036Н	Power factor of A phase	2	R	.		
0037H	Power factor of B phase	2	R	Int Keep 3 decimal places		
0038H	Power factor of C phase	2	R	Recp 3 decimal places		

0039Н	Total power factor	2	R	
003AH				
003BH	Frequency of power	2	R	Int Keep 2 decimal places
003CH	Total energy consumption	4	R	
003EH	Forward active energy consumption	4	R	Int unit kWh
0040H	Reversing active energy consumption	4	R	Keep 2 decimal places
0042H	Forward reactive energy consumption	4	R	Int
0044H	Reversing reactive energy consumption	4	R	unit kVarh Keep 2 decimal places
0046Н	Total energy consumption on A phase	4	R	Int
0048H	Forward active energy consumption on A phase	4	R	unit kWh Keep 2 decimal places
004AH	Reversing active energy consumption on A phase	4	R	recep 2 decimal places
004CH	Forward reactive energy consumption on A phase	4	R	Int unit kVarh
004EH	Reversing reactive energy consumption on A phase	4	R	Keep 2 decimal places
0050Н	Total energy consumption on B phase	4	R	
0052Н	Forward active energy consumption on B phase	4	R	Int unit kWh
0054Н	Reversing active energy consumption on B phase	4	R	Keep 2 decimal places
0056Н	Forward reactive energy consumption on B phase	4	R	Int
0058Н	Reversing reactive energy consumption on B phase	4	R	unit kVarh Keep 2 decimal places
005AH	Total energy consumption on C phase	4	R	Int
005CH	Forward active energy consumption on C phase	4	R	unit kWh
005EH	Reversing active energy consumption on C phase	4	R	Keep 2 decimal places
0060Н	Forward reactive energy consumption on C phase	4	R	Int unit kVarh
0062Н	Reversing reactive energy consumption on C phase	4	R	Keep 2 decimal places
0064H	Maximum forward active	4	R	Int

	demand in current month			unit KW
				Keep 3 decimal places
0066H~0067H	Occur time	4	R	Minute, hour, day, month
	Maximum reversing active			Int
0068H	demand in current month	4	R	unit kVar
				Keep 3 decimal places
006AH~006BH	Occur time	4	R	Minute, hour, day, month
	Maximum forward reactive			Int
006CH	demand in current month	4	R	unit kVar
	demand in current month			Keep 3 decimal places
006EH~006FH	Occur time	4	R	Minute, hour, day, month
	Maximum reversing reactive			Int
0070H	demand in current month	4	R	unit kVar
	demand in current month			Keep 3 decimal places
0072H~0073H	Occur time	4	R	Minute, hour, day, month
0074H	THDUa	2	R	
0075H	THDUb	2	R	Total distortion rate of voltage
0076Н	THDUc	2	R	and current on each phase
0077H	THDIa	2	R	Int
0078H	THDIb	2	R	Keep 2 decimal places
0079Н	THDIc	2	R	
007AH	THUa(Harmonic on	2×30	R	
00/АП	2nd-31st)			Harmonic voltage on 2nd-31st
0098H	THUa(Harmonic on	2×30	R	Int
007011	2nd-31st)	2//30		Keep 2 decimal places
00B6H	THUb(Harmonic on	2×30	R	Reep 2 decimal places
OODOIT	2nd-31st)	2/30	K	
00D4H	THUc(Harmonic on	2×30	R	
00 D 4П	2nd-31st)	2^30	K	II
00F2H	THIa(Harmonic on	2×30	R	Harmonic current on 2nd-31st Int
00F2H	2nd-31st)	2×30	K	
011011	THIb(Harmonic on	2,420	D	Keep 2 decimal places
0110H	2nd-31st)	2×30	R	
012511	Fundamental voltage on A	2	D	
012EH	phase	2	R	
010EH	Fundamental voltage on B	2	Ъ	
012FH	phase	2	R	
012011	Fundamental voltage on C	2	В	Int
0130H	phase	2	R	unit V
012111	Harmonic voltage on A	2		Keep 1 decimal places
0131H	phase	2	R	
012217	Harmonic voltage on B	_		
0132H	phase	2	R	
0133H	Harmonic voltage on C	2	R	

	phase			
0134Н	Fundamental current on A phase	2	R	
0135H	Fundamental current on B phase	2	R	
0136Н	Fundamental current on C phase	2	R	Int unit A
0137Н	Harmonic current on A phase	2	R	Keep 2 decimal places
0138H	Harmonic current on B phase	2	R	
0139Н	Harmonic current on C phase	2	R	
013AH	Fundamental active power on A phase	4	R	
013CH	Fundamental active power on B phase	4	R	Int unit kW
013EH	Fundamental active power on C phase	4	R	Keep 3 decimal places
0140H	Fundamental active power	4	R	
0142H	Fundamental reactive power on A phase	4	R	
0144H	Fundamental reactive power on B phase	4	R	Int unit kVar
0146Н	Fundamental reactive power on C phase	4	R	Keep 3 decimal places
0148H	Fundamental reactive power	4	R	
014AH	Harmonic active power on A phase	4	R	
014CH	Harmonic active power on B phase	4	R	Int unit kW
014EH	Harmonic active power on C phase	4	R	Keep 3 decimal places
0150H	Harmonic active power	4	R	
0152Н	Harmonic reactive power on A phase	4	R	
0154H	Harmonic reactive power on B phase	4	R	Int unit kVar
0156Н	Harmonic reactive power on C phase	4	R	Keep 3 decimal places
0158H	Harmonic reactive power	4	R	
015AH	Current forward active	4	R	Int unit kW

015CH	Current reversing active demand	4	R	Keep 3 decimal places
015EH	Current forward reactive demand	4	R	Int unit kVar
0160Н	Current reversing reactive demand	4	R	Keep 3 decimal places
0162H	Voltage imbalance	2	R	Int
0163H	Current imbalance	2	R	unit 0.01%
0164H	Temperature on A phase	2	R	Int
0165H	Temperature on B phase	2	R	unit 0.1°C
0166Н	Temperature on C phase	2	R	unit 0.1 C
0167H~01BDH		Re	served	
01BFH	wireless signal strength	2	R	Int
01C1H		Re	served	
01C2H	DO1	2	R/W	Int Bit0 effective
01C3H	DO2	2	R/W	Int Bit0 effective
01E1H	DO3	2	R/W	Int Bit0 effective

6.3 Settings of Alarm

Start Address (Hexadecimal)	Variable	Length	R/W	Notes
01DOH	Alarm permission bits	2	R/W	Bit0: overvoltage alarm permission bits Bit1: undervoltage alarm permission bits Bit2: overcurrent alarm permission bits Bit3: undercurrent alarm permission bits Bit4: overpower alarm permission bits Bit5: underpower alarm permission bits
01D1H	overvoltage alarm threshold	2	R/W	Int unit 0.1V
01D2H	overvoltage alarm time-delay	2	R/W	Int unit 0.01S
01D3H	undervoltage alarm	2	R/W	Int

	threshold			unit 0.1V
01D4H	undervoltage alarm	2	R/W	Int
01D4H	time-delay		K/W	unit 0.01S
045.54	overcurrent alarm		D /***	Int
01D5H	threshold	2	R/W	unit 0.01A
	Overcurrent alarm			Int
01D6H	time-delay	2	R/W	unit 0.01S
	undercurrent alarm			Int
01D7H	threshold	2	R/W	unit 0.01A
	undercurrent alarm			Int
01D8H	time-delay	2	R/W	unit 0.01S
	·			
01D9H	overpower alarm	2	R/W	Int
	threshold			unit 0.001kw
01DAH	overpower alarm	2	R/W	Int
	time-delay			unit 0.01S
01DBH	underpower alarm	2	R/W	Int
VIDBII	threshold	2	10 11	unit 0.001kw
01DCH	underpower alarm	2	D/XV	Int
01DCH	time-delay	2	R/W	unit 0.01S
01DDH~01E0H	Reserved			
				0:Electrical level
01E2H	DO3 Output mode	2	R/W	1:Purse
				0:DO
01E3H	DO3 Related content	2	R/W	1: Total failure
				0:None
	DO3 Output pulse		R/W	1:1S
				2:2S
01E4H		2		3:3S
	Widii			
				4:4S
				5:58
01E5H	DO1 Output mode	2	R/W	0:Electrical level
	•			1:Purse
01E6H		2	R/W	0:DO
012011	DO1 Related content	_		1: Total failure
				0:None
			R/W	1:1S
015711	DO1 Output pulse width			2:28
01E7H		2		3:38
				4:4S
				5:5S
			R/W	0: Electrical level
01E8H	DO2 Output mode	2		1:Purse
				0:DO
01E9H	DO2 Related content	2	R/W	1:Total failure
				1. Iotal lallule

01EAH	DO2 Output pulse width	2	R/W	0:None 1:1S 2:2S 3:3S 4:4S
				5:5S

6.4 Historical Data Memory

Start address (high byte)	Data type
48-53H	Last 1 month-last 12 months

Start address	Data type
(low byte)	
00H	Record date and time
03H	History total active energy
05H	History total forward active energy
07H	History total reversing active energy
09H	History total forward reactive energy
0BH	History total reversing reactive energy
0DH	Total active energy on A phase
0FH	Total forward active energy on A phase
11H	Total reversing active energy on A phase
13H	Total forward reactive energy on A phase
15H	Total reversing reactive energy on A phase
17H	Total active energy on B phase
19H	Total forward active energy on B phase
1BH	Total reversing active energy on B phase
1DH	Total forward reactive energy on B phase
1FH	Total reversing reactive energy on B phase
21H	Total active energy on C phase
23H	Total forward active energy on C phase
25H	Total reversing active energy on C phase
27H	Total forward reactive energy on C phase
29H	Total reversing reactive energy on C phase
2BH	Current spike electric energy
2DH	Current peak electric energy
2FH	Current flat electric energy
31H	Current valley electric energy
33Н	Current forward active spike electric energy
35H	Current forward active peak electric energy
37H	Current forward active flat electric energy
39Н	Current forward active valley electric energy
3ВН	Current reversing active spike electric energy

3DH	Current reversing Active peak electric energy
3FH	Current reversing active flat electric energy
41H	Current reversing Active valley electric energy
43H	Current forward reactive spike electric energy
45H	Current forward reactive spike electric energy
47H	Current forward reactive flat electric energy
49H	Current forward reactive valley electric energy
4BH	Current reversing reactive spike electric energy
4DH	Current reversing reactive peak electric energy
4FH	Current reversing reactive flat electric energy
51H	Current reversing reactive valley electric energy

6.5 Record of extreme value and occurrence time

1) Maximum records:

Starting address of interval (high byte)	Type of historical data
04	Extremum of the month and Occurrence time
05	Extremum of last 1 month and Occurrence time
06	Extremum of last 2 month and Occurrence time
07	Extremum of last 3 month and Occurrence time

Offset address of interval (low byte))	Data type
00	Voltage of A phase maximum value
00	and occurrence time
03	Voltage of B phase maximum value
03	and occurrence time
06	Voltage of C phase maximum value
00	and occurrence time
09	Voltage between A-B maximum value
09	and occurrence time
0C	Voltage between A-B maximum value
00	and occurrence time
0F	Voltage between A-B maximum value
OF	and occurrence time
12	Electricity of A phase maximum value
12	and occurrence time
15	Electricity of B phase maximum value
13	and occurrence time
18	Electricity of C phase maximum value
10	and occurrence time
1B	Three phase current vector sum
10	maximum value and occurrence time
1E	Active power of A phase maximum
<u> </u>	

	value and occurrence time
22	Active power of B phase maximum
	value and occurrence time
26	Active power of C phase maximum
20	value and occurrence time
2A	Total active power maximum value
ZA.	and occurrence time
2E	Reactive power of A phase maximum
212	value and occurrence time
32	Reactive power of B phase maximum
32	value and occurrence time
36	Reactive power of C phase maximum
30	value and occurrence time
3A	Total reactive power maximum value
371	and occurrence time
3E	Apparent power of A phase maximum
JL JL	value and occurrence time
42	Apparent power of B phase maximum
12	value and occurrence time
46	Apparent power of C phase maximum
	value and occurrence time
4 A	Total apparent power maximum value
771	and occurrence time

2) **Minimum record:**

Starting address of interval (high byte)	Type of historical data
04	Extremum of the month and Occurrence time
05	Extremum of last 1 month and Occurrence time
06	Extremum of last 2 month and Occurrence time
07	Extremum of last 3 month and Occurrence time

Offset address of interval (low byte))	Data type
4E	Voltage of A phase Minimum Value and occurrence time
51	Voltage of B phase Minimum Value and occurrence time
54	Voltage of C phase Minimum Value and occurrence time
57	Voltage between A-B Minimum Value and occurrence time
5A	Voltage between B-C Minimum value and occurrence time
5D	Voltage between C-A Minimum value and occurrence time

60	Electricity of A phase Minimum value
00	and occurrence time
63	Electricity of B phase Minimum value
03	and occurrence time
66	Electricity of C phase Minimum value
00	and occurrence time
69	Three phase current vector sum
0)	Minimum value and occurrence time
6C	Active power of A phase Minimum
00	value and occurrence time
70	Active power of B phase Minimum
70	value and occurrence time
74	Active power of C phase Minimum
/4	value and occurrence time
78	Total active power Minimum value and
78	occurrence time
7C	Reactive power of A phase Minimum
/C	value and occurrence time
80	Reactive power of B phase Minimum
80	value and occurrence time
84	Reactive power of C phase Minimum
04	value and occurrence time
88	Total reactive power Minimum value
00	and occurrence time
8C	Apparent power of A phase Minimum
80	value and occurrence time
90	Apparent power of B phase Minimum
70	value and occurrence time
94	Apparent power of C phase Minimum
77	value and occurrence time
98	Total apparent power Minimum value
98	and occurrence time

Note: The record of every extreme value and occurrence time is 6 bits, and the data configuration can be referred as below:

ADDRH	Event names	Data type	Note
ADDRL			
0400H	Maximum voltage of	The data of Maximum	data and decimal place refer to address
	A phase and	voltage of A phase	table 6.2
0401H	occurrence time	Occurrence time of	high byte : minutes
		minutes and hours	mgn byte . minutes

0402H	Occurrence time of Days and months	high byte : Days
-------	------------------------------------	------------------

7 Common troubleshooting

7.1 RS485 networking communication failure

Suggestion: Please first confirm whether the RS485 wiring is loose, AB connection reverse and other problems, and then check the table through the button to see if the general selection parameters, such as address, baud rate, check digit, etc., are set correctly.

7.2 Wireless communication failure of instrumentation

Suggestion: Please connect RS485 interface on the meter and USB convert to 485 serial port to read the parameters, and confirm whether the parameters are the same as the upper terminal wireless configuration (channel and spread spectrum factor). If different, please modify the meter's wireless parameters and retest the master terminal after the same, and if the same, it may be the meter and master terminal are in a relative long distance. It is too far to communicate or the scene is seriously disturbed. We can try to use the external antenna at the same time, or consider the newly added wireless master terminals, and then test it.

Headquarters: Acrel Co., LTD.

Address: No.253 Yulv Road Jiading District, Shanghai, China

TEL::0086-21-69158338 0086-21-69156052 0086-21-59156392

0086-21-69156971

Fax: 0086-21-69158303

Web-site: www.acrel-electric.com E-mail: ACREL008@vip.163.com

Postcode: 201801

Manufacturer: Jiangsu Acrel Electrical Manufacturing Co., LTD.

Address: No.5 Dongmeng Road, Dongmeng industrial Park, Nanzha

Street, Jiangyin City, Jiangsu Province, China

TEL./Fax: 0086-510-86179970 Web-site: www.jsacrel.com

Postcode: 214405

E-mail: JY-ACREL001@vip.163.com